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Abstract: Soil carbon models will likely play a vital role in national carbon accounting systems. In this
study, three models (APSIM, Century and RothC) are used to simulate soil carbon dynamics under the same
agro-ecological conditions and management practices. These models are widely-used in Australia, differ in
time step and also in how they represent the crop-soil system. APSIM provides a framework whereby a
cropping system model is configured from component modules, which operate on a daily time step. The
Century model has soil organic matter, water budget, grassland/crop, forest production sub-models and
management and event scheduling functions operating on a monthly time step. RothC models the turnover of
organic carbon in non-waterlogged soils, taking into account clay content, temperature and moisture content.
It operates on a monthly time step. Because RothC has no crop growth routine we used APSIM’s crop model
outputs to provide plant residue, yield and root data for RothC. The three models are run for six sites in
Southern Queenslard and statistical analyses are carried out to evaluate and compare model performances in
soil carbon estimations. All models provide a satisfactory representation of the pattern of soil carbon decline
under continuous cultivation and possible reasons for differences in model behaviours are also discussed. The
sensitivity analysis shows that Century is less sensitive to initial soil C levels than the other two models.
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1. INTRODUCTION carbon model is discussed briefly in terms of
treatment of soil carbon dynamics, required’ inputs

A ber of soi i 1 : ! :
number of soil organic matter models have been and time step of the simulation.

developed to monitor soil carbon changes and
subsequent feedback effects when soil management 2.2 APSIM

practices are changed. In Australia, soil organic . . .
matter (SOM) models such as Century [Parton et HRSTN (Agr‘lcultural‘ Product} on ~ System
. . sIMulator, Version 2.0) is a modelling framework
al. 1987] and RothC [Jenkinson, 1990] are widely .
. that allows models of crops, pastures, trees, soil
used in research. The locally developed crop . . :
. . water, nutrients, and erosion to be flexibly
production modelling shell, APSIM [Probert et al. . . .
configured to simulate diverse production systems.

1998] also ha's the capal?111ty o Similate soil Most modules, including SoilN and Residue that
carbon dynamics. Comparison of SOM models )
represent turnover of organic matter, operate on a

may be used 0 se.lect an aPpropnate mod‘el for 4 daily time-step. APSIM distinguishes between

particular application. This paper describes the . . . . el
- . . surface residues and residues in the soil. Within

behaviour of these three modelling systems in iy . . .

. . . SoilN, organic materials are conceptualized as
relation to experimental observations from long- . . .
term trials carried out in southern Queensland fresh organic matter (FOM) and two soil organic

’ matter pools (BIOM and HUM) that differ in their
rates of decomposition [Probert et al., 1998]. The
5. SOIL CARBON MODELLING BIQM pool.nothnally represent§ the.more labile,

soil microbial biomass and microbial products,
2.1 Introduction whilst the HUM pool comprises the remainder of
the soil organic matter. The amount of inert C
represents as a fraction of soil C. Flexible
specification of management regimes in farming

Soil organic matter includes plant and microbial
residues in all stages of decomposition. Each soil
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systems is possible. The timing and nature of
operations such as sowing, tillage, residue
management, fertilization, crop rotation, irrigation,
grazing and harvest methods are all controlled by a
user defined script language. The minimum climate
data set required to run are daily maximum and
minimum temperature, radiation and rainfall.
Information on soil texture per se is not an input to
the model although other parameters are used
which generally correlated with soil texture.

2.3 RothC

RothC (Rothamsted soil carbon turnover model)
models the tumover of organic carbon in non-
waterlogged soils [Jenkinson, 1990], using
monthly time steps and can model out to 100,000
years to find the soil's conceptual ‘equilibrium
state’. A spreadsheet implementation of RothC-
26.3 was used. The CSIRO in Adelaide and the
Australian Greenhouse Office have enhanced the
spreadsheet version of RothC to include the ability
to use the historical weather time series rather than
average weather and the radiocarbon dating
computations.

Plant material enters the soil environment, as
readily decomposable plant material (DPM) and
intermediate resistant plant material (RPM), and
undergoes decomposition through the soil
microbial biomass to form a number of pools: inert
(IOM), slow humic (HUM) and biomass (BIO).
These pools have varying resistance to
degradation. RothC considers all soil carbon
transformations to occur in a single soil layer. As
RothC does not contain a sub-model for plant
production; plant residue inputs are either
measured directly or are estimated from crop
yields. In this study, residue inputs, yields and root
weights were taken from APSIM simulations.

2.4 Century

The Century (version 5) agroecosystem model is
the latest version of a soil organic model initially
developed by Parton et al. (1987). This model
simulates C and nutrients (N,P,S) dynamics on a
monthly time step for an annual cycle over time
scales of centuries and millennia. The minimum
climate data required to run are monthly maximum
and minimum temperature and rainfall. Soil texture
in terms of sand, silt and clay content is an input to
the model. The SOM sub-model includes three soil
organic matter pools (active, slow and passive)
with different potential decomposition rates, above
and below ground litter pools and a microbial pool
which is associated with decomposing surface
litter.

Plant production can be simulated by using
grassland/crop, forest or savanna system sub-

Clay-sized
fraction of C

models and land use change can be represented by
changing the plant production type during model
runs. Simulation of complex agricultural
management practices including crop rotation,
tillage practices, fertilization, irrigation, grazing,
and harvest methods are possible.

2.5 Approximation of pool sizes

Many organic compounds in the soil are intimately
associated with inorganic soil particles. Physical
fractionation techniques that relate more directly to
soil carbon dynamics are often used to define and
delineate various relatively-discrete soil organic
carbon pools [Post and Kwon, 2000]. Figure 1
shows the major physically separated soil carbon
fractions that can be related to carbon pools.

I Plant inputs |

\ 4 y
Soluble Carbon Insoluble Carbon

y

Microbial Biomass

Silt-sized
fraction of C

Sand-sized
fraction of C

« -
Figure 1. Transfer of organic matter in a typical
soil carbon model.

In this study, initial sand-sized fraction of C is
considered to be the active pool in Century. Clay-
sized fraction of C after a considerable period of
cultivation is taken as the passive pool in Century
and IOM in RothC. Then the difference is taken to
be the silt-sized fraction of C as the slow pool in
Century and HUM pool in RothC. The BIO pool in
RothC is estimated as 20% of total soil C [pers.
comm. Skjemstad, 2001]. Since there is no
recommended method to estimate inert C in
APSIM, an assumption has been made that the
inert C increases logarithmically with the soil depth
reaching a maximum at lm. Values for BIOM in
APSIM are assumed to be 0.06, 0.04 and 0.03 of
total soil C for 0-10cm, 10-20cm and 20-30cm
layers respectively.

3. LONG-TERM EXPERIMENT

Simulations were conducted for six sites in
southern Queensland subject to continuous wheat
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cropping with a range of commencement dates;
1910 for Waco (Wa), 1935 for Langlands-Logie
(L-Logie), 1945 for Cecilvale/(Ce), 1955 for Billa
Billa (Bi), 1957 for Thallon (Th) and 1960 for
Riverview (Rv). The location of study area,
description of soils, crop and soil management
practices, and soil sampling, analytical techniques
as well as clay- and sand-sized fractions of soil
carbon data were given in a series of papers by
Dalal and Mayer [1986a,b and c]. In this study,
each model was used to simulate carbon (C)
dynamics in the 0-20 cm soil layer. Initial soil
carbon data for the top 20cm were taken from the
same sources. Soil and soil C data and
management practices relevant to the modelling
exercise were extracted from Dalal and Mayer
[1986a,b and c] and are given in Table 1.
Information on soil physical properties is assumed
to be constants over time.

The planting decision and planting time in APSIM
were set with respect to amount of rainfall received
since no information was available on planting
times. If a minimum rainfall (25mm) was not
received in consecutive 10 days of the planting
season, no sowing was assigned in APSIM. Any
fallow years identificd in APSIM was also taken to
the Century scheduiing, as fallow years were not
always recorded.

4. COMPARISON AND EVALUATION OF
MODEL PERFORMANCE

Models were evaluated in terms of their ability to
simulate observed soil carbon changes. The total
difference between the simulated and measured
values was calculated as the root mean square
error, RMSE (%). The modelling efficiency (ME)
provides a comparison of the efficiency of the
chosen model with the efficiency of describing the
data as the mean of the measured data. The
coefficient of determination (CD) is a measure of
the proportion of the total variance in the measured
data that is explained by the simulated data. The
bias in the total difference between simulation and
measurements was determined by calculating the
relative error, E. The nature of the bias was further
examined using the mean difference, M. The mean
difference between measured and simulated values
gives an indication of the bias in the simulation,
but is less informative than E because errors are
not proportional to the size of measurement.
However, it is a useful statistic when standard error
values are not available to derive a value for Egsy,
since M can be related directly to the ¢ statistic to
show a significant difference between simulated
and measured values. A ¢ value greater than the
critical two-tailed 2.5% ¢ value was taken to

indicate that the simulation showed a significant
bias towards over- or under-estimation when
compared to measured values. To assess whether
simulated values follow the same pattern as
measured values, the sample correlation coefficient
() was calculated. The value of r is useful in
assessing how well the shape of the simulation
matches with the shape of the measured data.

Table 1. Soil data and crop management

information.
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Clay % 72 49 40 34 59 18
SC% 140 1.85 142 1.26 0.73 1.03
BD 090 1.09 1.10 1.00 1.02 1.24

Soil pH 8.1 74 74 74 72 6.5
CN ratio 112 110 131 106 121 14.8

SR % 51 23 33 27 36 86
N fert 320 75 183 50 5.0 5.0
P fert 1.0 00 7.7 2.0 0.0 0.0
NC 5 4 5 5 3 3

(SC = initial soil carbon for top 20cm, BD = bulk
density (Mg m™), CN ratio = CN ratio of the soil, SR =
amount of stubble removed, N fert = amount of nitrogen
fertilizer (kg/ha year), P fert = amount of phosphorus
fertilizer (kg/ha year), NC = average number of
cultivations per year).

These statistics can be useful in assessing how well
the shape of the simulation matches the shape of
the measured data. Further information of this
statistical analysis can be found in Smith et al.
[1997].

Initial C level when virgin soils are brought under
cultivation generally decline with the time [Dalal
and Mayer 1986b]. Sensitivity analyses are
performed in this study to assess how the initial
soil C level is important to predicted soil C. The
following dimensionless index of sensitivity (SI) is
used for sensitivity analysis:

R,—R%

R

S[=——2-1% 1

= (1)
R

where R, is predicted soil C when the initial soil C
is set to Py, R, is default predicted value of initial
soil C, P, is 1.1 times default soil C value, and P,
is default soil C value. A sensitivity index of 1
indicates that the predicted soil C changed by an
average of 10% for a 10% change in the initial soil
c.
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Figure 2. Changes in soil carbon in the top layer (0-20cm) with the period of cultivation. Simulated
above-ground biomass production by Century and APSIM is also shown.

5. RESULTS AND DISCUSSION

Figure 2 shows the simulated run-down curves
against measured soil carbon data for each model
as well as for each site and simulated above-ground
biomass productions for APSIM and Century
models for each site. Simulated biomass outputs
from both APSIM and Century are in reasonable
agreement, however, no measured data were
available to verify the simulation. It is not known
how fertilization and other treatments may have
affected biomass production and yields. Plant
diseases may also have influenced crop growth and
vield in some seasons, but such effects are not
included in the models. For all three models,

the total soil C in the surface 0-20 cm has declined
continuously at all sites with a tendency to
approach a steady state, though all models and sites
show that the approach to an equilibrium is slow
(Fig. 2). The consequences of fallow years in terms
of rapid soil C decrease are more clearly shown in
simulations with Century than with the other two
models. Much of the continuous soil C losses can
be attributed to reduced inputs in organic matter,
increased decomposibility of crop residues and
tillage effects that decrease the amount of physical
protection to decomposition [Post and Kwon,
2000].
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RMSE (%)

Mean difference (M)  Coeff. of determin. (CD)

Sample correlation coeff. (r)

Table 2. Decline in soil C as a percent of total C
for the first 40 years after clearing

]
- - -5 &
s B =z T 2 § &
§ 24 3§ & 8§ 3 ¢
B 1 O @B B @ 4
Century 32 58 47 53 37 56 47

(]
1
Relative error (E)

1}

|
0.15
0.10
0.05
0.00

-0.05

-0.10
-0.15

t test

Bi Th L1 Ce Rv Wa

10
08 | o
os I
04|
02 |
0.0

- Century
RothC
I Apsiv

Bi Th LI e Rv Wa
Figure 3. Graphical representation of Statistics
describing the performance of models

The decline in soil C over the first 40 years since
clearing (Table 2) is steepest with Century
simulations followed by RothC and APSIM
respectively with the exception of Waco where
RothC shows the steepest decline and Riverview
where APSIM’s shows more steep decline than
RothC. There appears to be a large effect of N
fertilizer when combined with stubble retention (32
kg/ha of N fertilizer and 51% stubble retention,
Table 1) in the Century simulation for Waco, a
response not matched in APSIM. This may explain
that the combined effect of N fertilizer and stubble
retention is greatly represented in the century than
in APSIM [Probert et al. 1995].

Sensitivity index

Figure 3 explains the statistics describing the
performance of models. All three models have
values of total error (RMSE) around 8-18% and the
averaged value of RMSE for all sites is 11.6% for
Century, 11.2% for RothC and 12.6% for APSIM.
Century and APSIM had highest total error at two
locations each and RothC was highest for one
location.

Since standard errors of the measurements were
not available, the statistical significance of RMSE
could not be assessed. Therefore, the accuracy of
the simulation was assessed by calculating the
modelling efficiency (ME) and the coefficient of
determination (CD). Each model has one negative
ME that indicates that the simulated values
describe the data less well than a mean of the
measurements. Except for these three negative
values, the positive values of ME are distributed
within the same range. A positive value indicates
that the simulated values describe the trend in the
measured data better than the mean of the
measurements. A CD value 1 or above indicates
that the deviation of the predictions from the mean
of the measured values is less than that observed in
the measurements, ie. models describe the
measured data better than the mean of the
measurements. Values of CD vary with the site as
well as with the model. Values of CD equal to or
greater than 1 occur at four locations for RothC,
three locations for APSIM and two locations for

Century.
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Figure 4 Sensitivity analysis for initial soil C levels

In terms of model bias, values of E and M rank
model bias similarly and the highest values of E
and M have found two occasions in the Century,
two occasions in APSIM and one occasion in
RothC. The ¢ values for M indicate that there were
four significant biases in which two for the Century
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and one each for other two models. However,
RothC showed the lowest overall bias. All models
have a significant bias on Waco. All models
showed positive correlations () between measured
and simulated data. The Century has highest values
on four occasions whereas RothC had two.

Sensitivity indices (SI) in Figure 4 show that, for
all models at all sites, except Century at
Langlands-Logie, the sensitivity to initial soil C
levels decreases over the period of cultivation.
This occurs because the difference in predicted soil
C between the default and increased values of
initial soil C declines over the period of
cultivation. Values of S7 for RothC and APSIM
behave in a fairly similar manner. However, in
Century, SI values have declined more rapidly than
for the other two models. This may be caused by a
relatively rapid adjustment of pool sizes in

Century.

6. CONCLUSIONS

All models provide a satisfactory representation of
the pattern of soil carbon decline under continuous
cultivation. Total error between measured and
simulated values was moderately low (5 < RMSE >
20) for all models. The values of modelling
efficiencies and coefficients of determination are
shown to be in a fairly similar range for all sites.
In terms of bias, RothC behaved somewhat better
than other two models. All models show a positive
correlation between measured and simulated data.
Despite some statistical differences in soil C
outputs of three soil carbon models, all three
models may be used to effectively and accurately
simulate soil carbon dynamics at the test sites. The
sensitivity analysis shows that Century is less
sensitive to initial soil C levels than other two
models.

One of the major concerns in this modelling
exercise was the level of site-specific information
required. This is only a concern depending on the
intended use. Since RothC requires less site
specific information and basic inputs, and is less
complex, it is well suited to simulations where
information is limited or operations must be
conducted on spatial arrays. However, independent
systems for estimation of plant residue inputs are
needed. As Smith et al. (1997) stated, differences
in the level of calibration are likely to be partly
responsible for the differences = in model
performance. However, in this study, all of
available soil and management information have
been employed wherever possible in model
calibration.
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